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INVARIANT INTEGRALS IN THE PROBLEM

OF A CRACK ON THE INTERFACE BETWEEN TWO MEDIA

UDC 517.95A. M. Khludnev

The equilibrium problem for an elastic body containing a crack on the interface between two media is
considered. It is proved that there exist invariant (independent of the integration surface) integrals
in this problem. The existence of invariant integrals is also established in the problem of a contact
between an elastic body and a rigid stamp. Nonlinear boundary conditions of mutual non-penetration
are prescribed on the contact boundaries. The physical meaning of invariant integrals is established.
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Introduction. A contact problem describes an equilibrium state for an elastic body contacting a rigid
(nondeformable) body. Boundary conditions of equality and inequality types are prescribed on the contact boundary.
In the equilibrium problem for an elastic body containing a crack, nonlinear conditions on the crack faces are also
prescribed. In the present work, we prove that there exist invariant integrals in these nonlinear problems. Invariant
integrals are constructed both in the two-dimensional and in the three-dimensional cases.

The existence of invariant integrals in the linear crack theory, which are commonly called the Cherepanov–
Rice integrals, was discussed in many papers (see, e.g., [1–4]). These discussions involved linear problems, which
means setting linear boundary conditions on the crack faces. We will consider nonlinear problems of the crack
theory, which were analyzed in [5]. The specific features of nonlinear problems are the boundary conditions on the
crack faces, which have the form of a system of equalities and inequalities. From the viewpoint of applications,
nonlinear problems provide a better description of real processes, whereas linear problems of the crack theory can
contradict the mechanics of the phenomenon. Invariant integrals for smooth (in particular, constant) tensors of
elasticity moduli were constructed previously in nonlinear crack problems [5–7]. In the present work, we construct
invariant integrals for an elastic body with a crack located on the interface between two media. In this case, the
tensor of elasticity moduli is not smooth in the domain.

To obtain invariant integrals in contact problems, a fictitious domain method is used, which was recently
developed for problems with Signorini boundary conditions [8, 9]. In this case, the equilibrium problem for a cracked
body belongs to a family of parameter-dependent problems, and the contact problem corresponds to the limiting
value of the parameter. Actually, invariant integrals in the problems considered, i.e., in the problem of equilibrium
of an anisotropic body with a crack and in the contact problem, would be obtained simultaneously. The fictitious
domain method used allows us, by introducing an auxiliary parameter, to construct a family of boundary-value
problems including both the contact problem and the equilibrium problem for a cracked body. Fundamentals of
the fictitious domain method, as applied to linear boundary conditions, can be found in [10–12]. Simultaneously,
we use a formula for the derivative of the energy functional with respect to the perturbation parameter in problems
of the elasticity theory for cracked bodies with nonlinear boundary conditions on the crack faces. The technique of
differentiation of energy functionals in nonlinear crack problems is described in [5–7, 13, 14]. Applications of crack
problems in solid mechanics can be found in [1, 2, 15], and the global issues of studying boundary-value problems
in non-smooth domains were considered in [16].
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Two-Dimensional Case. Let Ω1 ⊂ R
2 be a simply connected bounded domain with the Lipschitz bound-

ary Γ1, and Γc ⊂ Γ1 be a contact boundary, which is assumed, for simplicity, to be a smooth curve defined in the
form of a graph of the function x2 = φ(x1), x1 ∈ [0, 1]. It is assumed that there exists δ0 > 0 such that

((−δ0, δ0) × {0}) ⊂ Γ1, (1 − δ0, 1 + δ0) × {0}) ⊂ Γ1. (1)

These inclusions mean that the boundary Γ1 contains straight-line segments in the neighborhood of the points (0, 0)
and (1, 0). We denote the unit vector of the internal normal to Γ1 by ν = (ν1, ν2). Let Γ0 = Γ1 \ Γc. The contact
problem is formulated as follows [17]. In the domain Ω1, we have to find functions u0 = (u0

1, u
0
2) and σ = {σij}

(i, j = 1, 2) such that

− divσ = f in Ω1; (2)

σ = C1ε(u0) in Ω1; (3)

u0 = 0 on Γ0; (4)

u0 · ν � 0, σν � 0, στ = 0, u0 · νσν = 0 on Γc. (5)

Hereinafter, εij(v) = (vi,j + vj,i)/2 are the components of the strain tensor, vi,j = ∂vi/∂xj , x = (x1, x2) ∈ Ω1,
f = (f1, f2) ∈ C1

loc(R
2) is a known function, C1 = {c1ijkl} is the tensor of elasticity moduli (i, j, k, l = 1, 2),

c1ijkl = c1klij = c1jikl, c1ijkl = const,

c1ijklξklξij � c|ξ|2, c > 0 ∀ ξ = {ξij}, (6)

σν = σijνjνi, στ = σν − σνν, σν = {σijνj}2
i=1.

In this system, Eqs. (2) are the equilibrium equations, Eqs. (3) describe Hooke’s law, the boundary condition (4)
corresponds to clamping of the elastic body on Γ0, and the boundary conditions (5) describe the contact of the
elastic body with a non-deformable surface with zero friction and are called the Signorini boundary conditions.
All quantities with two subscripts are assumed to be symmetric with respect to these subscripts (σij = σji, etc.);
summation is performed over repeated subscripts.

It is known that problem (2)–(5) admits a variational formulation and has a unique solution. Indeed, let us
consider the space of the Sobolev functions

H1
Γ0

(Ω1) = {v = (v1, v2) ∈ H1(Ω1) | v = 0 on Γ0}
and the set of admissible displacements

K = {v ∈ H1
Γ0

(Ω1) | v · ν � 0 a. e. on Γc}.
Then, problem (2)–(5) is equivalent to minimization of the functional

Π0(Ω1; v) =
1
2

∫

Ω1

σ(v)ε(v) −
∫

Ω1

fv

over the set K and can be written in the form of the variational inequality

u0 ∈ K,

∫

Ω1

σ(u0)ε(v − u0) �
∫

Ω1

f(v − u0) ∀ v ∈ K. (7)

Hereinafter, we have σ(v) = C1ε(v).
In addition to the contact problem (2)–(5), we consider the equilibrium problem for an elastic body with

a crack on the interface between two media. Adding a bounded domain Ω2 with the Lipschitz boundary Γ2 to
the domain Ω1 and solving the boundary-value problem with nonlinear boundary conditions on Γc in the domain
Ωc = Ω1 ∪ Ω2 ∪ (Σ \ Γc), we can establish the existence of invariant integrals in the equilibrium problem for
an anisotropic elastic body with a crack on the interface between the media. Here, we have Σ = Σ0 \ ∂Σ0 and
Σ0 = Γ1 ∩ Γ2. The resultant problem describes equilibrium of an elastic body occupying the domain Ωc and
containing the crack Γc, with the boundary conditions of non-penetration on the faces Γ±

c . Actually, we consider a
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family of boundary-value problems depending on the parameter λ. Each value of the parameter λ > 0 corresponds
to the equilibrium problem for a cracked body, λ = 0 corresponds to problem (2)–(5). The existence of invariant
integrals will be established simultaneously for the entire family of problems, i.e., for all λ > 0. Passing to the limit
as λ→ 0, we also establish the existence of invariant integrals for the contact problem (2)–(5).

For the contact problem (2)–(5), the added domain Ω2 is called fictitious. As will be shown below, the
coefficients of the operator for the problem considered in the domain Ω2 tend to infinity as λ tends to zero.

Before implementing the scheme described above, we clarify the geometry of the domains Ω1 and Ω2. We
assume that the points (0, 0) and (1, 0) are internal points of the curve Σ (this assumption does not refer to examples
3 and 4, where another geometry of the domains is considered). Concerning the smoothness of the boundaries Γ1

and Γ2, it is sufficient to satisfy the Lipschitz condition. Note that the existence of invariant integrals of different
types and for domains of different geometry will be established. Each two-dimensional case requires integration over
an (arbitrary) smooth curve; in three-dimensional cases, integration is performed over two-dimensional surfaces.

Thus, we introduce the tensor Bλ = {bλijkl} (λ > 0, i, j, k, l = 1, 2),

bλijkl =

{
c1ijkl in Ω1,

λ−1c2ijkl in Ω2.

Here, the tensor C2 = {c2ijkl} possesses the same properties as the tensor C1. In the domain Ωc containing the
crack Γc, we solve the following problem. We have to find functions uλ = (uλ

1 , u
λ
2 ) and σλ = {σλ

ij} (i, j = 1, 2) such
that

− divσλ = f in Ωc; (8)

σλ = Bλε(uλ) in Ωc; (9)

uλ = 0 on Γ; (10)

[uλ] · ν � 0, [σλ
ν ] = 0, σλ

ν � 0, σλ
τ = 0, [uλ] · νσλ

ν = 0 on Γc. (11)

Here [v] = v+ − v− is the jump of the function v on Γc (the plus and minus refer to the positive and negative
directions of the normal ν, respectively), Γ is the outer boundary of the domain Ωc, i.e., Γ = ∂Ωc \ (Γ+

c ∪ Γ−
c ),

σλ
ν = σλ

ijνjνi, and σλ
τ = σλν − σλ

ν ν. The equality σλ
τ = 0 on Γc means that σλ

τ = 0 on Γ±
c .

Each value of the parameter λ > 0 corresponds to the equilibrium problem for a body with a crack on the
interface between anisotropic parts that occupy the domains Ω1 and Ω2 with constant elasticity tensors C1 and
C2/λ, respectively. Let us consider the case λ > 0 and the limiting case λ = 0.

Problem (8)–(11) has a unique solution for each particular λ > 0. Indeed, let us consider the space of the
functions

H1
Γ(Ωc) = {v = (v1, v2) ∈ H1(Ωc) | v = 0 on Γ}

and the set of admissible displacements

Kc = {v ∈ H1
Γ(Ωc) | [v] · ν � 0 a. e. on Γc}.

Then, problem (8)–(11) is equivalent to minimization of the functional

Πλ(Ωc; v) =
1
2

∫

Ωc

σλ(v)ε(v) −
∫

Ωc

fv

over the set Kc and can be formulated in the form of the variational inequality

uλ ∈ Kc,

∫

Ωc

σλ(uλ)ε(v − uλ) �
∫

Ωc

f(v − uλ) ∀ v ∈ Kc. (12)

Here σλ(v) are found from the equation of the form (9), i.e., σλ(v) = Bλε(v).
The objective of further considerations is to introduce a perturbation parameter into problem (12), i.e., to

consider a family of perturbed problems depending on the parameter δ and defined in the perturbed domain Ωδ
c .

For each fixed λ and small δ, we will find the solution of the perturbed problem uλδ and the derivative of the
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energy functional Πλ(Ωδ
c ; u

λδ) with respect to the parameter δ for δ = 0. With a proper choice of perturbations,
the formula for the derivative will yield invariant integrals in problem (8)–(11). Then, we pass to the limit in the
formula for this derivative as λ → 0. It is important to note that the formula for the above-mentioned derivative
of the energy functional will contain the solution uλ, which is unperturbed with respect to δ. In addition, uλ will
converge to u0 as λ→ 0, where u0 is the solution of problem (7), which allows us to pass to the limit as λ→ 0 in
the formula for the derivative mentioned. The final formula leads to invariant integrals for problem (2)–(5) with an
appropriate choice of perturbations.

We consider the perturbation of the domain Ωc and seek for the solution of the problem in the perturbed
domain Ωδ

c . Let the transformation of independent variables

y = Ψδ(x), x ∈ Ωc, y ∈ Ωδ
c (13)

describe the perturbation of the domain Ωc, where Ψδ(x) = x + δV (x); V (x) = (V1(x), V2(x)) ∈ W 1,∞
loc (R2). For

small δ, transformation (13) establishes a biunique correspondence between Ωc and Ωδ
c . We assume that the vector

field V (x) is such that

νδ(y) = ν(x), y = Ψδ(x), (14)

where νδ(y) is the normal to the perturbed cut Γδ
c = Ψδ(Γc). For each δ, we obtain a perturbed domain Ωδ

c and
a perturbed [as compared to (8)–(11)] boundary-value problem, which is formulated as follows. We have to find
functions uλδ = (uλδ

1 , uλδ
2 ) and σλδ = {σλδ

ij } (i, j = 1, 2) such that

− divσλδ = f in Ωδ
c ; (15)

σλδ = Bλδε(uλδ) in Ωδ
c ; (16)

uλδ = 0 on Ψδ(Γ); (17)

[uλδ] · ν � 0, [σλδ
ν ] = 0, σλδ

ν � 0, σλδ
τ = 0, [uλδ] · νσλδ

ν = 0 on Γδ
c. (18)

We assume that the coefficients bλδ
ijkl in Eq. (16) are determined in Ωδ

c with properties of smoothness being preserved
during transformation (13), i.e., they remain piecewise-constant:

bλδ
ijkl =

{
c1ijkl on Ψδ(Ω1),

λ−1c2ijkl on Ψδ(Ω2).

Let uλδ be the solution of problem (15)–(18) from the space H1(Ωδ
c). This solution can be found by the following

procedure. We consider the set of admissible displacements in problem (15)–(18):

Kδ
c = {v ∈ H1

Ψδ(Γ)(Ω
δ
c) | [v] · ν � 0 a. e. on Γδ

c}.
Next, we introduce the notation

Πλ(Ωδ
c ; v) =

1
2

∫

Ωδ
c

σλδ(v)ε(v) −
∫

Ωδ
c

fv

and consider the minimization problem

min
v∈Kδ

c

Πλ(Ωδ
c; v). (19)

The solution of problem (19) exists and is determined from the variational inequality

uλδ ∈ Kδ
c ,

∫

Ωδ
c

σλδ(uλδ)ε(v − uλδ) �
∫

Ωδ
c

f(v − uλδ) ∀ v ∈ Kδ
c . (20)

We assume that V (x) = (V1(x), 0), and the function V1 is such that Ψδ(Γ) = Γ and condition (14) is satisfied.
In this case, mapping (13) establishes a biunique correspondence between the spaces H1

Γ(Ωc) and H1
Γ(Ωδ

c), and also
between the sets Kc and Kδ

c . Let us determine the energy functional in problem (20) as
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Πλ(Ωδ
c; u

λδ) =
1
2

∫

Ωδ
c

σλδ(uλδ)ε(uλδ) −
∫

Ωδ
c

fuλδ

and introduce the notation

Iλ =
d

dδ
Πλ(Ωδ

c ; u
λδ)

∣∣∣
δ=0

for the derivative of the energy functional with respect to the parameter δ. According to [6, 7], we have

Iλ =
∫

Ωc

{1
2

div (V bλijkl)εkl(uλ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
−

∫

Ωc

div (V fi)uλ
i . (21)

Here, Eij(Φ; v) = (vi,kΦkj + vj,kΦki)/2 and Φ = {Φij} (i, j = 1, 2). Note, by virtue of the assumption made about
the vector field V , there is no need to differentiate the coefficients bλijkl with respect to x2, which, generally speaking,
have a discontinuity along the curve Σ. We write the formula for Iλ in the form Iλ = Iλ

1 + Iλ
2 , where

Iλ
1 =

∫

Ω1

{1
2

div V σij(uλ)εij(uλ) − σij(uλ)Eij

(∂V

∂x
; uλ

)}
−

∫

Ω1

div (V fi)uλ
i ,

Iλ
2 =

∫

Ω2

{1
2

div V σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
−

∫

Ω2

div (V fi)uλ
i .

(22)

It is known (see [8, 9]) that, as λ→ 0,

uλ/
√
λ→ 0 strongly in H1(Ω2); (23)

uλ → u0 strongly in H1(Ω1), (24)

where u0 is the solution of problem (2)–(5) (or problem (7)). It follows from (23) that

|∇uλ|2/λ→ 0 strongly in L1(Ω2), λ→ 0. (25)

Then, from (21) with allowance for (22), (24), and (25), we find I0 = limλ→0 I
λ, i.e., we have

I0 =
∫

Ω1

{1
2

div V σij(u0)εij(u0) − σij(u0)Eij

(∂V

∂x
; u0

)}
−

∫

Ω1

div (V fi)u0
i . (26)

Note, the function u0 in Eq. (26) is the solution of problem (2)–(5).
The invariant integrals in problems (2)–(5) and (8)–(11) will be obtained from formulas (26) and (21),

respectively. As the components of the stress tensor are not determined, generally speaking, in the domain Ω2 for
λ = 0, the corresponding invariant integrals for problems (2)–(5) and (8)–(11) will be written separately.

Let us now consider some particular cases of choosing the vector field V , which will yield invariant integrals
by means of transformations of formulas (21) and (26). In all examples, we will have to choose the neighborhoods
S1 and S2 with smooth (Lipschitz) boundaries ∂S1 and ∂S2. In what follows, we assume that the boundaries of the
domains (S1 \ S2) ∩ Ωc also satisfy the Lipschitz condition.

Example 1. Let the carrier of the function θ lie in a small neighborhood S1 of the point (1, 0) and θ = 1 in
the neighborhood S2 of the point (1, 0), S2 ⊂ S1. The smallness of the neighborhood S1 means that ∂S1 intersects
the axis x1 along straight-line segments (1). We choose perturbation (13) in the form

y1 = x1 + δθ(x1, x2), y2 = x2,

where (x1, x2) ∈ Ωc and (y1, y2) ∈ Ωδ
c. The vector field V (x) is determined by the formula V (x) = (θ(x), 0), and

Eq. (21) can be rewritten as

Iλ =
∫

Ωc

{1
2
θ,1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1θ,j

}
−

∫

Ωc

(θfi),1u
λ
i . (27)
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After integration by parts, Eq. (27) yields

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1nj

}
+

∫

(S1\S2)∩Ωc

θ(σλ
ij,j + fi)uλ

i,1 +
∫

S2∩Ωc

fiu
λ
i,1. (28)

Here n = (n1, n2) is the internal normal to the boundary ∂S2, and (∂S2) ∩ Ωc is a closed curve surrounding the
crack tip (1, 0). It should be emphasized that the solution uλ of problem (8)–(11) is H2-smooth up to the points
(1−δ0, 1)×{0} and (1, 1+δ0)×{0} (see [5, p. 100]), which ensures convergence of integrals in Eq. (28). In addition,
it should be noted that integration in Eq. (28) can be performed with respect to either crack face if the part of the
curve (∂S2)∩Ωc lies on the segment (1− δ0, 1)×{0}. This is valid due to the presence of the boundary conditions

σλ
12(u

λ) = [σλ
22(u

λ)] = 0, σλ
22(u

λ)[uλ
2,1] = 0 on (1 − δ0, 1) × {0}. (29)

Indeed, the conditions σλ
12(u

λ) = 0 and [σλ
22(u

λ)] = 0 on (1 − δ0, 1) × {0} coincide with the conditions σλ
τ = 0 and

[σλ
ν ] = 0 [see (11)], and the proof of the second relation in (29) can be found in [5, p. 276].

We assume that f ≡ 0 in S2 ∩ Ωc. Taking into account the validity of the equilibrium equations (8) in Ωc,
we obtain the invariant integral for problem (8)–(11) from Eq. (28):

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1nj

}
,

which is independent of the choice of the curve (∂S2) ∩ Ωc. By similar considerations, under the same conditions
on f , we obtain the invariant integral for problem (2)–(5) from Eq. (26):

I0 =
∫

(∂S2)∩Ω1

{1
2
n1σij(u0)εij(u0) − σij(u0)u0

i,1nj

}
. (30)

In this case, the curve (∂S2) ∩ Ω1 is an arbitrary “cap” lying in Ω1 and surrounding the point (1, 0).
In deriving Eq. (30) from (26), we should note the validity of the boundary condition

σ22(u0)u0
2,1 = 0 on (1 − δ0, 1) × {0}, (31)

and also the H2-smoothness of the solution u0 up to the points (1−δ0, 1)×{0}. This smoothness of the solution u0

of the contact problem (2)–(5) was proved in [17], and the validity of the boundary condition (31) can be established
similar to the second relation in (29).

The invariant integral over the curve lying in Ω1 and surrounding the point (0, 0) also exists and has the
form (30).

Example 2. Let θ be a smooth function with a support in a small neighborhood S1 of the curve Γc.
Moreover, θ = 1 in the neighborhood S2 of the curve Γc, S2 ⊂ S1. We consider perturbation (13) in the form

y1 = x1 + δθ(x), y2 = x2,

where (x1, x2) ∈ Ωc and (y1, y2) ∈ Ωδ
c. As in example 1, we have V (x) = (θ(x), 0), and formula (21) coincides

with (27).
Assuming that f ≡ 0 in S2 ∩ Ωc, we perform integration by parts in (27). We obtain the invariant integral

for problem (8)–(11)

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σij(uλ)εij(uλ) − σij(uλ)uλ

i,1nj

}
,

where n = (n1, n2) is the internal normal to ∂S2. In this case, (∂S2)∩Ωc is a curve lying in Ωc and surrounding Γc.
For problem (2)–(5), the invariant integral is obtained with the same choice of V (x) in (26) and has the

form

I0 =
∫

(∂S2)∩Ω1

{1
2
n1σij(u0)εij(u0) − σij(u0)u0

i,1nj

}
.

Now let us consider another geometry of the domains Ω1 and Ω2.
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Example 3. Let a bounded domain Ω1 have the form of a stripe. We assume that Ω1 has a boundary
consisting of segments Γ0 and Γc of the form

Γ0 = ((0, 1) × {0}) ∪ ((0, 1) × {1}) ∪ ({0} × [0, 1]),

Γc = {(x1, x2) | x1 = ψ(x2), x2 ∈ [0, 1]}.
We assume that the function ψ satisfies the Lipschitz condition; 0 < ψ(x2) < 2, wherex2 ∈ [0, 1]. The domain Ω2

also has the form of a bounded stripe with the boundary

Γ2 = Γc ∪ ((1, 2) × {0}) ∪ ((1, 2) × {1}) ∪ ({2} × [0, 1]).

Let the smooth function θ vanish outside a certain neighborhood S1 of the curve Γc and there exists a neighbor-
hood S2 of the curve Γc, where θ = 1 and S2 ⊂ S1. We consider the transformation y = Ψδ(x) of the form

y1 = x1 + δθ(x), y2 = x2.

Here (x1, x2) ∈ Ωc and (y1, y2) ∈ Ωδ
c . As previously, Ωc = Ω1 ∪ Ω2 ∪ (Σ \ Γc). Obviously, we have Σ \ Γc = Ø,

where Σ = Σ0 \ ∂Σ0, Σ0 = Γ1 ∩ Γ2; hence, in this case, Ωc = Ω1 ∪ Ω2. On the set Ωc, we can solve a problem of
the form (12) and find the solution uλ; after that, on the perturbed set Ωδ

c, we can solve the problem of finding
uλδ = (uλδ

1 , uλδ
2 ) and σλδ = {σλδ

ij } (i, j = 1, 2) such that

− divσλδ = f in Ωδ
c ,

σλδ = Bλε(uλδ) in Ωδ
c ,

uλδ = 0 on (∂Ωδ
1 ∪ ∂Ωδ

2) \ Ψδ(Γc)±,

[uλδ] · ν � 0, [σλδ
ν ] = 0, σλδ

ν � 0, σλδ
τ = 0, [uλδ] · νσλδ

ν = 0 on Ψδ(Γc).

Here ν is the internal normal to the boundary ∂Ω1 determined on Γc and Ωδ
i = Ψδ(Ωi) (i = 1, 2). Note, in this case,

we have νδ = Ψδ(ν). The set Ωc and the perturbed set Ωδ
c are not domains because their connectivity is violated.

We can find the derivative Iλ of the energy functional in the form (21) and the vector field V (x) = (θ(x), 0). Hence,
formula (21) can be written in the form (27). Integrating Eq. (27) by parts and assuming that f ≡ 0 in S2 ∩ Ωc,
we obtain the invariant integral for problem (8)–(11):

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1nj

}

[n = (n1, n2) is the internal normal to ∂S2].
By similar considerations, we obtain the invariant integral for the contact problem (2)–(5) from Eq. (26):

I0 =
∫

(∂S2)∩Ω1

{1
2
n1σij(u0)εij(u0) − σij(u0)u0

i,1nj

}
.

In this case, (∂S2) ∩ Ω1 is a smooth curve connecting the upper and lower edges of the stripe Ω1.
Example 4. Let the domain Ω1 have the form of a cone and

Γc = {(r, ϕ) | 0 � ϕ � ϕ0, r = q0(ϕ), q0 > 0, q0 ∈ C0,1},

Γ0 = {(r, ϕ) | ϕ = 0, 0 � r � q0(0)} ∪ {(r, ϕ) | ϕ = ϕ0, 0 � r � q0(ϕ0)}.
Here, (r, ϕ) are the polar coordinates on the plane. We choose a smooth function θ equal to zero outside some small
neighborhood S1 of the curve Γc. Let θ = 1 in the neighborhood S2 of the curve Γc, S2 ⊂ S1. The domain Ω2 is
chosen as follows:

Ω2 = {(r, ϕ) | 0 < ϕ < ϕ0, q0(ϕ) < r < q1(ϕ), q1 ∈ C0,1}.
We determine a (disconnected) set Ωc = Ω1 ∪ Ω2 and consider a perturbation of the set Ωc of the form

y1 = x1(1 + δθ(x)), y2 = x2(1 + δθ(x)), x ∈ Ωc, y ∈ Ωδ
c. (32)
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As previously, we obtain a formula for the derivative of the energy functional in the perturbed problem (15)–(18):

Iλ =
∫

Ωc

{1
2

div V σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
−

∫

Ωc

div (V fi)uλ
i .

We find the vector field for perturbation (32):

V (x) = (θ(x)x1, θ(x)x2).

It should be noted that this vector field ensures the equality∫

S2∩Ωc

{1
2

div V σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
= 0.

Thus, assuming that f ≡ 0 in S2 ∩ Ωc, we obtain

Iλ =
∫

(S1\S2)∩Ωc

{1
2

div V σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
−

∫

(S1\S2)∩Ωc

div(V fi)uλ
i .

Substituting the values of the field V (x) into this equality, we find

Iλ =
∫

(S1\S2)∩Ωc

{1
2

(θ,lxl)σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)(uλ
i,lxl)θ,j

}
−

∫

(S1\S2)∩Ωc

(xlθfi),lu
λ
i . (33)

We integrate by parts in Eq. (33). Note, after integration by parts, the sum of the integrals over (S1 \ S2)∩Ωc will
be equal to zero; hence, we obtain the invariant integral over (∂S2) ∩ Ωc in problem (8)–(11):

Iλ =
∫

(∂S2)∩Ωc

{1
2

(nlxl)σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)(uλ
i,lxl)nj

}

[n = (n1, n2) is the internal normal to the boundary ∂S2]. The form of this invariant integral differs from those
obtained previously.

For the contact problem (2)–(5), the invariant integral has the form

I0 =
∫

(∂S2)∩Ω1

{1
2

(nlxl)σij(u0)εij(u0) − σij(u0)(u0
i,lxl)nj

}
.

Three-Dimensional Case. We consider a contact problem in a simply connected bounded domain Ω1 ⊂ R
3

with the Lipschitz boundary Γ1. Let Γc ⊂ Γ1 be the contact boundary, i.e., the part of the boundary with the
Signorini boundary conditions; Γ0 = Γ1 \ Γc, measΓ0 > 0. For simplicity, we assume that Γc as a two-dimensional
surface in R

3 can be written as a graph of the function

x3 = φ(x1, x2) [(x1, x2) ∈ D]

with a rather smooth function φ. Here D ⊂ R
2 is a simply connected bounded domain with the boundary γ0 of

class C0,1, and γ0, as a curve in R
3, can be written in the form

γ0 = {(r, ϕ, 0) | r = g(ϕ), ϕ ∈ [0, 2π], g(0) = g(2π), g > 0, g ∈ C0,1};
moreover, there exists δ0 > 0 such that

{(r, ϕ, 0) | g(ϕ) − δ0 < r < g(ϕ) + δ0} ⊂ Γ1. (34)

Here (r, ϕ, ξ) are the cylindrical coordinates in R
3. Condition (34) means that there is a planar segment belonging

to the boundary Γ1 in the vicinity of the edge γ0 of the contact boundary Γc.
The contact problem in the domain Ω1 is formulated as follows. We have to find functions u0 = (u0

1, u
0
2, u

0
3)

and σ = {σij} (i, j = 1, 2, 3) such that

− div σ = f in Ω1,

σ = C1ε(u0) in Ω1,
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u0 = 0 on Γ0,
(35)

u0 · ν � 0, σν � 0, στ = 0, u0 · νσν = 0 on Γc.

Here ν = (ν1, ν2, ν3) is the internal normal to ∂Ω1 on Γc, C1 = {c1ijkl} (i, j, k, l = 1, 2, 3) is the tensor of elasticity
moduli, possessing the same properties as that in the two-dimensional case [see (6)], and f = (f1, f2, f3) ∈ C1

loc(R
3).

The remaining notation is the same as that used previously.
Problem (35) admits a variational formulation and can be written as a variational inequality. We denote

H1
Γ0

(Ω0) = {v = (v1, v2, v3) ∈ H1(Ωc) | v = 0 on Γ0},

K = {v ∈ H1
Γ(Ωc) | [v] · ν � 0 a. e. on Γc}.

There exists a solution of the variational inequality

u0 ∈ K,

∫

Ω1

σ(u0)ε(v − u0) �
∫

Ω1

f(v − u0) ∀ v ∈ K.

As in the two-dimensional case, we construct a bounded domain Ω2 with the Lipschitz boundary Γ2. Let
Ωc = Ω1 ∪Ω2 ∪ (Σ \Γc) and Σ = Σ0 \ ∂Σ0 (Σ0 = Γ1 ∩ Γ2). Actually, we assume that R

3 contains a domain divided
by a regular surface Σ0 into two subdomains Ω1 and Ω2; Γc ⊂ Σ0. We denote the outer boundary of the domain Ωc

(i.e., ∂Ωc \Γ±
c ) by Γ. The geometry of the domains Ω1 and Ω2 is assumed to be such that the cut Γc does not reach

the outer boundary Γ, i.e., Γc ∩ Γ = Ø. This assumption does not refer to examples 7 and 8 (see below).
We assume that Bλ = {bλijkl} (λ > 0, i, j, k, l = 1, 2, 3),

bλijkl =

{
c1ijkl in Ω1,

λ−1c2ijkl in Ω2,

where the tensor C2 = {c2ijkl} possesses the same properties as C1. In the domain Ωc with the cut Γc, we can find
a solution of the family of problems depending on the parameter λ > 0, namely: for each λ > 0, we have to find
functions uλ = (uλ

1 , u
λ
2 , u

λ
3 ) and σλ = {σλ

ij} (i, j = 1, 2, 3) such that

− divσλ = f in Ωc,

σλ = Bλε(uλ) in Ωc,

uλ = 0 on Γ,
(36)

[uλ] · ν � 0, [σλ
ν ] = 0, σλ

ν � 0, σλ
τ = 0, [uλ] · νσλ

ν = 0 on Γc.

Let

H1
Γ(Ωc) = {v = (v1, v2, v3) ∈ H1(Ωc) | v = 0 on Γ},

Kc = {v ∈ H1
Γ(Ωc) | [v] · ν � 0 a. e. on Γc}.

Then, problem (36) is equivalent to minimization of the functional

Πλ(Ωc; v) =
1
2

∫

Ωc

σλ(v)ε(v) −
∫

Ωc

fv

over the set Kc; therefore, the solution uλ of this problem exists and satisfies the variational inequality

uλ ∈ Kc,

∫

Ωc

σλ(uλ)ε(v − uλ) �
∫

Ωc

f(v − uλ) ∀ v ∈ Kc.

As a whole, further construction is similar to that performed in the two-dimensional case. We consider the pertur-
bation y = Ψδ(x) of the initial domain in the form

y = x+ δV (x), x ∈ Ωc, y ∈ Ωδ
c, V (x) = (V1(x), V2(x), 0).
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Moreover, we assume that the support of the field V ∈ W 1,∞
loc (R3) does not intersect the boundary Γ. Condition

(14) is assumed to be satisfied. Then, we solve a perturbed problem of the form (15)–(18) and find the solution uλδ

and the derivative of the energy functional Πλ(Ωδ
c ; uλδ) with respect to the parameter δ for δ = 0. Let

Iλ =
d

dδ
Πλ(Ωδ

c; u
λδ)

∣∣∣
δ=0

.

Similar to (21), we obtain

Iλ =
∫

Ωc

{1
2

div (V bλijkl)εkl(uλ)εij(uλ) − σλ
ij(u

λ)Eij

(∂V

∂x
; uλ

)}
−

∫

Ωc

div (V fi)uλ
i , (37)

where

Eij(Φ; v) = (vi,kΦkj + vj,kΦki)/2, Φ = {Φij}, i, j, k, l = 1, 2, 3.

Note, by virtue of the choice of the vector field V made, there is no need to differentiate the coefficients bλijkl in
Eq. (37) with respect to x3.

Using convergence of the form (23)–(25) again, we obtain a formula for I0 = limλ→0 I
λ. Indeed,

I0 =
∫

Ω1

{1
2

div V σij(u0)εij(u0) − σij(u0)Eij

(∂V

∂x
; u0

)}
−

∫

Ω1

div (V fi)u0
i . (38)

Let us now consider particular choices of the vector field V (x) in formulas (37) and (38), which yield invariant
integrals in the three-dimensional case for problems (35) and (36).

Example 5. We choose a smooth function θ with a support in a small neighborhood S1 of the surface Γc.
We assume that θ = 1 in the neighborhood S2 of the surface Γc, S2 ⊂ S1. The smallness of the neighborhood S1

means that the edge of the surface (∂S1) ∩ Ω1 is a part of the planar segment (34) of the boundary Γ1. We choose
the perturbation of the domain Ωc in the form

y1 = x1 + δθ(x1, x2, x3) cosα, y2 = x2 + δθ(x1, x2, x3) sinα, y3 = x3,

where (x1, x2, x3) ∈ Ωc, (y1, y2, y3) ∈ Ωδ
c, and α ∈ [0, 2π) is a fixed number. We denote p1 = cosα and p2 = sinα.

In this case, we have V (x) = (θ(x)p1, θ(x)p2, 0), and formula (37) acquires the form

Iλ =
∫

Ωc

{1
2

(θ,lpl)σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)(uλ
i,lpl)θ,j

}
−

∫

Ωc

(θfi),lplu
λ
i . (39)

Integrating Eq. (39) by parts, we obtain

Iλ =
∫

(∂S2)∩Ωc

{1
2

(nlpl)σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)(uλ
i,lpl)nj

}
+

∫

(S1\S2)∩Ωc

θ(σλ
ij,j + fi)(uλ

i,lpl) +
∫

S2∩Ωc

fiu
λ
i,lpl.

Here, n = (n1, n2, n3) is the internal normal to ∂S2. Assuming that f ≡ 0 in S2 ∩ Ωc, we obtain the invariant
integral for problem (36) from the previous relation:

Iλ =
∫

(∂S2)∩Ωc

{1
2

(nlpl)σλ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)(uλ
i,lpl)nj

}
(40)

(summation is performed over i, j = 1, 2, 3). Similar to formula (38), the invariant integral for the contact problem
(35) has the form

I0 =
∫

(∂S2)∩Ω1

{1
2

(nlpl)σij(u0)εij(u0) − σij(u0)(u0
i,lpl)nj

}
. (41)

In this case, (∂S2) ∩ Ω1 is the “cap”-shaped surface lying in Ω1 and covering Γc.
Example 6. Let θ(x) be a smooth function equal to zero outside of a small neighborhood S1 of the curve γ0,

θ = 1 in the neighborhood S2 of the curve γ0, S2 ⊂ S1. For example, S1 and S2 are toruses containing γ0, which
are so small that (∂S1) ∩ Γ1 is a part of the planar segment (34). Let us consider a perturbation of the domain Ωc

in the form
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y1 = x1 + δθ(x)p1, y2 = x2 + δθ(x)p2, y3 = x3,

where x ∈ Ωc, y ∈ Ωδ
c , and p2

1 + p2
2 = 1. We have V (x) = (θ(x)p1, θ(x)p2, 0), and the formula for Iλ coincides

with (39). This case differs from example 5 by the fact that only the neighborhood of the front γ0 of the crack Γc

is perturbed.
In this case, the invariant integral for problem (36) for f ≡ 0 in S2 ∩ Ωc has the form (40).
The same value of the vector field V (x) in (38) yields an invariant integral in problem (35), whose form

coincides with (41). In this case, (∂S2) ∩ Ω1 is a “cap”-shaped surface lying in Ω1 and covering the curve γ0.
The case with only some part of the edge of the boundary Γc being perturbed is described by the next

example.
Example 7. Let the contact boundary Γc be a part of the plane, namely,

Γc = {(x1, x2, 0) | 0 � x1 � φ(x2), φ(x2) > 0, x2 ∈ [−1, 1]},
and there exists δ0 > 0 such that γ1 ⊂ Γ1, where

γ1 = {(x1, x2, 0) | 0 � x1 � φ(x2) + δ0, x2 ∈ [−1, 1]}.
Here, φ(x2) is a rather smooth function. As previously, we consider the domain Ω2 with a smooth boundary Γ2

and construct the domain Ωc. Further, we consider the perturbation of the domain Ωc with x ∈ Ωc and y ∈ Ωδ
c :

y1 = x1 + δθ(x), y2 = x2, y3 = x3. (42)

The chosen function θ equals zero outside some small three-dimensional neighborhood S1 of the curve

{(x1, x2, 0) | x1 = φ(x2), x2 ∈ [−1, 1]}. (43)

Moreover, θ = 1 in a certain neighborhood S2 of curve (43), S2 ⊂ S1. The smallness of the neighborhood S1 means
that S1 ∩ γ1 is a part of the plane. According to (42), we have V (x) = (θ(x), 0, 0). Then, from formula (37), we
obtain

Iλ =
∫

Ωc

{1
2
θ,1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1θ,j

}
−

∫

Ωc

(θfi),1u
λ
i . (44)

We integrate Eq. (44) by parts and obtain an invariant integral for problem (36) under the assumption that f ≡ 0
in S2 ∩ Ωc. This integral has the form

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1nj

}
,

where n = (n1, n2, n3) is the internal normal to ∂S2.
As in other examples, by substituting the chosen field V (x), we use Eq. (38) to find an invariant integral for

problem (35):

I0 =
∫

(∂S2)∩Ω1

{1
2
n1σij(u0)εij(u0) − σij(u0)u0

i,1nj

}
.

Example 8. Let the domain Ω1 have the form of a “beam”

Ω1 = {(x1, x2, x3) | 0 < x1 < ϕ(x2, x3), x2 ∈ (0, 1), x3 ∈ (0, 1)}
with a rather smooth function ϕ such that ϕ = 1 for x2 = 0, 1, x3 = 0, 1. We assume that 0 < ϕ(x2, x3) < 2 for
x2 ∈ [0, 1] and x3 ∈ [0, 1]. Let the contact boundary Γc in the Signorini problem (35) be chosen in the form

Γc = {(x1, x2, x3) | x1 = ϕ(x2, x3), x2 ∈ [0, 1], x3 ∈ [0, 1]}.
The domain Ω2 is also assumed to have the form of a “beam”:

Ω2 = {(x1, x2, x3) | ϕ(x2, x3) < x1 < 2, x2 ∈ (0, 1), x3 ∈ (0, 1)}.
We choose a smooth function θ equal to zero outside some small neighborhood S1 of the surface Γc and such that
θ = 1 in the neighborhood S2 of the surface Γc, S2 ⊂ S1. We consider the perturbation of the set Ωc = Ω1 ∪ Ω2:

y1 = x1 + δθ(x), y2 = x2, y3 = x3, x ∈ Ωc, y ∈ Ωδ
c .
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Note that the set Ωc in this case is not a domain because the connectivity of Ωc is violated. We can easily find the
vector field V (x) = (θ(x), 0, 0). Thus, for this vector field V (x), we obtain the following formula from (37):

Iλ =
∫

Ωc

{1
2
θ,1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1θ,j

}
−

∫

Ωc

(θfi),1u
λ
i . (45)

Integrating Eq. (45) by parts, we find an invariant integral for problem (36) under the assumption that f ≡ 0
in S2 ∩ Ωc:

Iλ =
∫

(∂S2)∩Ωc

{1
2
n1σ

λ
ij(u

λ)εij(uλ) − σλ
ij(u

λ)uλ
i,1nj

}

[n = (n1, n2, n3) is the internal normal to the boundary ∂S2].
Similar considerations for f ≡ 0 in S2 ∩ Ωc yield an invariant integral in problem (35):

I0 =
∫

(∂S2)∩Ω1

{1
2
n1σij(u0)εij(u0) − σij(u0)u0

i,1nj

}
.

In particular, we can choose

(∂S2) ∩ Ω1 = {(x1, x2, x3) | x1 = ψ(x2, x3), x2 ∈ (0, 1), x3 ∈ (0, 1)}
with a rather smooth function ψ(x2, x3) such that

0 < ψ(x2, x3) < ϕ(x2, x3), x2 ∈ (0, 1), x3 ∈ (0, 1).

In conclusion, we note that the existence of invariant integrals can also be established in some other cases.
In all situations considered above, the value of the invariant integral coincides numerically with the value of the
derivative of the energy functional with respect to the perturbation parameter δ for δ = 0. In particular, invariant
integrals can be used to approximately find the energy functionals in perturbed problems. As was already noted,
the invariant integral Iλ equals the value of the derivative of the energy functional Πλ(Ωδ

c ; u
λδ) with respect to the

perturbation parameter δ for δ = 0. Therefore, we can use the formula

Πλ(Ωδ
c ; u

λδ) = Πλ(Ωc; uλ) + δIλ + o(δ)

valid for all λ > 0. A similar expansion is also valid for λ = 0, where Ωc should be replaced by Ω1.
This work was supported by the Russian Foundation for Basic Research (Grant No. 03-01-00124).
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